Physical electro-thermal model of resistive switching in bi-layered resistance-change memory

نویسندگان

  • Sungho Kim
  • Sae-Jin Kim
  • Kyung Min Kim
  • Seung Ryul Lee
  • Man Chang
  • Eunju Cho
  • Young-Bae Kim
  • Chang Jung Kim
  • U. -In Chung
  • In-Kyeong Yoo
چکیده

Tantalum-oxide-based bi-layered resistance-change memories (RRAMs) have recently improved greatly with regard to their memory performances. The formation and rupture of conductive filaments is generally known to be the mechanism that underlies resistive switching. The nature of the filament has been studied intensively and several phenomenological models have consistently predicted the resistance-change behavior. However, a physics-based model that describes a complete bi-layered RRAM structure has not yet been demonstrated. Here, a complete electro-thermal resistive switching model based on the finite element method is proposed. The migration of oxygen vacancies is simulated by the local temperature and electric field derived from carrier continuity and heat equations fully coupled in a 3-D geometry, which considers a complete bi-layered structure that includes the top and bottom electrodes. The proposed model accurately accounts for the set/reset characteristics, which provides an in-depth understanding of the nature of resistive switching.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigation of resistive switching in anodized titanium dioxide thin films

In this work, TiO2 nanostructures were grown on titanium thin films by electrochemical anodizing method. The bipolar resistive switching effect has been observed in Pt/TiO2/Ti device. Resistive switching characteristics indicated the TiO2 nanotubes are one of the potential materials for nonvolatile memory applications.  Increasing anodizing duration will increase nanotube lengths which itself c...

متن کامل

High-performance HfOx/AlOy-based resistive switching memory cross-point array fabricated by atomic layer deposition

Resistive switching memory cross-point arrays with TiN/HfO x /AlO y /Pt structure were fabricated. The bi-layered resistive switching films of 5-nm HfO x and 3-nm AlO y were deposited by atomic layer deposition (ALD). Excellent device performances such as low switching voltage, large resistance ratio, good cycle-to-cycle and device-to-device uniformity, and high yield were demonstrated in the f...

متن کامل

Thermoelectric Seebeck effect in oxide-based resistive switching memory

Reversible resistive switching induced by an electric field in oxide-based resistive switching memory shows a promising application in future information storage and processing. It is believed that there are some local conductive filaments formed and ruptured in the resistive switching process. However, as a fundamental question, how electron transports in the formed conductive filament is stil...

متن کامل

Statistical characteristics of reset switching in Cu/HfO2/Pt resistive switching memory

A major challenge of resistive switching memory (resistive random access memory (RRAM)) for future application is how to reduce the fluctuation of the resistive switching parameters. In this letter, with a statistical methodology, we have systematically analyzed the reset statistics of the conductive bridge random access memory (CBRAM) with a Cu/HfO2/Pt structure which displays bipolar switchin...

متن کامل

On the resistive switching mechanisms of Cu/ZrO2 :Cu/Pt

We use convincing experimental evidences to demonstrate that the nonpolar resistive switching phenomenon observed in Cu /ZrO2 :Cu /Pt memory devices conforms to a filament formation and annihilation mechanism. Temperature-dependent switching characteristics show that a metallic filamentary channel is responsible for the low resistance state "ON state#. Further analysis reveals that the physical...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2013